Connect with us

INFECTIOUS DISEASES

Researchers Discover New Antibiotics Resistance Mechanism Opening the Way For Antibiotics Design Against Superbugs

Published

on

Researchers at The Hong Kong University of Science and Technology (HKUST) have identified for the first time the culprit behind the causing of broad-spectrum bacterial resistance to peptide antibiotics – widely perceived as the last-line of defense against antibiotic-resistant bacteria, opening a new direction to the design of new drugs in tackling superbugs.

The discovery – made by Chair Professor from the Division of Life Science Prof Qian Pei-Yuan and his fellow researchers, came in the best moment as the team has also discovered that this enzyme, which they identified as the cause of broad-spectrum bacteria resistance against peptide antibiotics, was actually found in not just a few, but many different strains of bacteria, sounding an alarm against persistent improper use of antibiotics.

Peptide antibiotics – including vancomycin and polymyxin for respective treatment of Staphylococcus Aureus (CA-MRSA) Infection and Escherichia coil infection, are often used as the last resort due to their resilience to multidrug resistant bacteria. However, a few years ago scientists have started identifying a few types of peptide antibiotics which have developed symptoms of bacterial resistance, although the causes behind remained unknown. Now, following the analysis of over 6,000 bacteria genomes under repeated validation through gene editing, chemical and enzymatic analyses, Prof Qian’s team eventually identified a family of D-stereospecific resistance peptidases (DRPs) as the source of the problem, and its magnitude extends well beyond a few strains of bacteria.

“DRPs are phylogenetically widely distributed in nature, if they are transferred to opportunistic pathogens with human’s increasing misuse and overuse of antibiotics, more and more peptide antibiotics would be rendered useless, leading to delay or even failure in treatment,” said Prof Qian, also David von Hansemann Professor of Science as well as Acting Head of the Department of Ocean Science at HKUST.

“Misuse and overuse of antibiotics of humans will intensify the problem of antibiotic resistance of pathogens, that makes research on peptide antibiotics even more important,” he added.

“Deepening our understanding of antibiotic resistance mechanisms to peptide antibiotics does not only serve as a wake-up call, but is also conducive to increasing our collective antibiotic arsenal. The findings of DRPs is just the beginning, we hope it will lead to more research on the use and development of peptide antibiotics.”

INFECTIOUS DISEASES

How Do we Use MRSA Against Itself?

Published

on

Antibiotic-resistant infections cause more than 30,000 deaths annually in the U.S. alone. The majority of those are caused by methicillin-resistant Staphylococcus aureus, more commonly known as MRSA, which can turn routine medical operations into near-death battles.

MRSA evolved to become a deadly killer because it’s wily and resilient. A new Michigan State University study, however, is figuring out how to turn one of its strengths against it.

“Attacking the cell membrane and inhibiting its ability to produce lipids, or fats, could be an effective treatment protocol,” said Neal Hammer, MSU assistant professor of microbiology and molecular genetics, and senior author of the study that appears in the current issue of the Journal of Bacteriology. “MRSA, though, bypasses the effects of fatty acid inhibitors by absorbing human lipids.”

Antibiotic resistance is a significant challenge in modern medicine. Pathogens encode genes to stay one step ahead, and scientists conduct research that will hopefully stop them, Hammer added.

The study began with the already established fact that MRSA has a genetic hardwired, fat-absorbing pathway. In an evolutionary arms race, MRSA’s ability to absorb human fat and use it as a shield of sorts gives it an advantage. The scientists asked what was the source of the fatty acids in humans?

The answer lay in a simple test that many of us take each year.

Human blood is filled with lipids — good and bad cholesterol — that everyone knew existed but didn’t connect to MRSA. The scientists suggest that MRSA steals these fatty acids and then integrates the lipids into its own cell membrane. This allows it to resist antimicrobials that target fatty acid synthesis. And since there’s plenty of these fatty acids in the blood and liver, MRSA has a veritable endless buffet on which to feast.

“MRSA secretes enzymes, called ‘lipases,’ that free the fatty acids in human LDLs, or bad cholesterol,” Hammer said. “We used mass spectrometry to identify how MRSA was able to perform this feat — the first time this process has been observed.”

Past research laid the groundwork for this discovery. Many of those studies focused on fatty sources found on human skin. This emphasis was due in part to knowing that as much as 30 percent of the world’s population carry MRSA on their skin — without any detrimental health effects.

Now that Hammer’s team is shining the scientific spotlight on how MRSA consumes fatty acids present in the host, future research can focus on these new targets and preventing MRSA from obtaining host fatty acids. This could be a strategy to improve the efficacy of triclosan, an antibacterial agent used in hospitals and found in many household products, as well as other bacterial fatty acid synthesis inhibitors.

The interdisciplinary team of MSU scientists who were part of the study includes: Phillip Delekta, John Shook, Todd Lydic and Martha Mulks.

Continue Reading

INFECTIOUS DISEASES

Does Body Odour Point the Way to Malaria?

Published

on

Typhoid Mary may have infected a hundred or more people, but asymptomatic carriers of malaria infect far more people every year. An international team of researchers is working toward a way to identify malaria patients including infected individuals who show no malaria symptoms.

People who have malaria but are not symptomatic abound in the heaviest areas of malaria infestation. Even blood tests do not necessarily pick up infection with the plasmodium parasite, especially at low parasite densities. DNA tests for the parasite usually show infection, but they are far from rapid.

“Our previous work in a mouse model found that malaria infection altered the odors of infected mice in ways that made them more attractive to mosquitoes, particularly at a stage of infection where the transmissible stage of the parasite was present at high levels,” said Consuelo De Moraes, adjunct professor of biology, Penn State, and professor of environmental systems science, ETH Zurich. “We also found long-term changes in the odor profiles of infected mice.”

The researchers wanted to see if they could identify changes in human odors associated with malaria infection that might be useful for diagnosing infected individuals. They were particularly interested in identifying those who were infected, but had no symptoms. The researchers initially used microscopy and an SD Bioline Rapid Diagnostic Test to identify patients with malaria. Because these methods have limited sensitivity, particularly when parasite loads are low, infections were confirmed by DNA tests. They identified 333 people who unambiguously were either infected with malaria or were not infected with malaria.

Only if both microscopy and DNA studies were negative were subjects considered malaria-free. Infected patients for the initial studies were both microscopy and DNA positive for malaria. In some later analyses, the researchers included 77 people who were positive for malaria according to DNA, but showed no parasites in the microscopic tests.Malaria infection does not create new volatile chemicals in the body, but alters the amounts — up or down — of volatile chemicals that are already present in the odors of healthy people.

“It is interesting that the symptomatic and asymptomatic infections were different from each other as well as from healthy people,” said Mark C. Mescher, adjunct professor of biology, Penn State, and professor of environmental systems science, ETH Zurich.

This difference among infected, infected asymptomatic, and healthy individuals may eventually lead to tests capable of rapidly and accurately identifying infected people, even those without symptoms.

The researchers report in today’s (May 14) issue of Proceedings of the National Academy of Sciences that predictive models using machine learning reliably identify infection status based on volatile biomarkers. They state “our models identified asymptomatic infections with 100 percent sensitivity, even in the case of low-level infections not detectable by microscopy.” These results far exceed any currently available rapid diagnostic tests.

“But, we should emphasize that we are a long way away from developing a practical diagnostic assay based on odor cues,” said De Moraes.

For a test to succeed it would need to be rapidly and cheaply deployable under field conditions, but still detect infections with high sensitivity.

“In the near term, our goal is to refine the current findings to find the most reliable and effective biomarkers we can,” said Mescher. “This is really basic science to identify the biomarkers of malaria. There is still a lot more work to be done to develop a practical diagnostic assay.”

Continue Reading

INFECTIOUS DISEASES

The Common Cold: Could we be Close to a Cure

Published

on

The common cold has defied medical science for millennia; it has outfoxed both our immune system and the pharmaceutical industry. However, according to a new study, help may soon be at hand.

The appropriately named common cold strikes the average adult two to three times per year, and children even more regularly.

Currently, there is no way to prevent a common cold, and once it has arrived, there is no way to get rid of it.

Despite the impressively high-tech world we are living in, medical research cannot yet defeat this foe. All we can do is treat its symptoms and hold tight until it has passed.

Why is the common cold difficult to tackle?

The common cold has evaded medical science’s advances for two primary reasons. The first issue is that there is not just one single culprit. Colds are most often caused by a rhinoviruses — a large family of viruses with hundreds of variants. This makes vaccination an impossibility and gives our immune system a challenging task.

Secondly, these viruses evolve rapidly — so even if we could produce vaccines to cover the full spectrum of rhinoviruses, they would quickly become resistant.

Although dealing with a cold is not a huge issue for most people, there are good reasons to keep hunting for ways to fight it. One person involved in the hunt is Prof. Ed Tate, of Imperial College London in the United Kingdom. He explains the importance of battling the common cold:

“The common cold is an inconvenience for most of us, but can cause serious complications in people with conditions like asthma and [chronic obstructive pulmonary disease].”

A new approach

The scientists were initially looking for a compound that would target a protein in malaria parasites. They found two likely molecules and discovered that they were most effective when they were combined.

Using advanced techniques, they combined the two molecules and produced a new compound that blocks an enzyme found in human cells, called N-myristoyltransferase (NMT).

Viruses normally steal NMT from human cells and use it to create a protective shell around their genetic information, known as the capsid. NMT is vital for the survival of cold viruses; without it, they cannot replicate and spread.

All strains of the common cold virus use this technique, so inhibiting NMT would scupper all strains of common cold virus. In fact, it should also work against the related viruses that cause foot-and-mouth disease and polio.

Also, because the molecule targets human cells rather than the virus, resistance would not be an issue. The team’s findings were recently published in the journal Nature Chemistry.

The researchers have high hopes for the drug, which currently goes under the codename of IMP-1088.

A drug like this could be extremely beneficial if given early in infection, and we are working on making a version that could be inhaled so that it gets to the lungs quickly.”

Prof. Ed Tate

Though other drugs that target human cells in this way have been trialed before, IMP-1088 is “more than 100 times more potent” than its predecessors.

Also, earlier drugs designed to block NMT were too toxic to be of benefit. This new drug, however, did not damage cultured human cells. Of course, more research will be needed to confirm that the drug is safe for use.

Another concern is outlined by Prof. Tate, who explains, “The way the drug works means that we would need to be sure it was being used against the cold virus, and not similar conditions with different causes, to minimize the chance of toxic side effects.”

So, we are not there yet, but we are as close as we have ever been to a cure for the common cold.

Continue Reading

Like Us on Facebook

Trending Posts

News3 days ago

Paternal Transmission Of Epigenetic Memory Via Sperm

Studies of human populations and animal models suggest that a father’s experiences such as diet or environmental stress can influence...

News3 days ago

Father’s Nicotine Use Can Cause Cognitive Problems In Children And Grandchildren

A father’s exposure to nicotine may cause cognitive deficits in his children and even grandchildren, according to a study in...

News3 days ago

Nutrition Has A Greater Impact On Bone Strength Than Exercise

ANN ARBOR—One question that scientists and fitness experts alike would love to answer is whether exercise or nutrition has a...

News3 days ago

Breast­feed­ing Pro­tects In­fants From An­ti­bi­otic-Res­ist­ant Bac­teria

Globally, more than 200,000 newborns die annually of infections caused by antibiotic-resistant bacteria. However, a new study shows that breastfeeding...

News3 days ago

Combining Genetic and Sun Exposure Data Improves Skin Cancer Risk

SAN DIEGO, Calif. – By combining data on individuals’ lifetime sun exposure and their genetics, researchers can generate improved predictions...

News5 days ago

More Clues Revealed In Link Between Normal Breast Changes And Invasive Breast Cancer

A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process —...

News5 days ago

Kids’ Sleep May Suffer From Moms’ Tight Work Schedules

It may be tough for working moms to get a good night’s sleep, but working tight hours may affect their...

Trending