Connect with us

News

Amputation Injury Is Communicated To Opposing Limbs

Published

on

In research that extends knowledge about the physiology of regeneration and wound repair, Tufts University biologists have discovered that amputation of one limb is immediately reflected in the bioelectric properties of the contralateral, or opposing, un-damaged limb of developing frogs. The pattern of bioelectric depolarization in the un-injured leg is directly correlated to the position and type of injury, indicating that information about damage to tissues is available to their symmetrical counterparts within about 30 seconds of injury. The newly discovered phenomenon, dubbed “bioelectric injury mirroring” or BIM, is described in detail in a paper to be published in the journal Development.

Bioelectric phenomena are caused by cells that produce a voltage potential across their membrane by actively pumping or passively diffusing charged ions into or out of the cell. Most cells are capable of doing this, and patterns of high and low voltage potentials help direct the proliferation and differentiation of cells, as well as the patterning of tissues and organs, during embryonic development. Bioelectric states have also been implicated in regeneration — researchers have been able to alter bioelectric state to induce the regeneration of tails on tadpoles that had already matured beyond the capability of regeneration.

Studies of the bioelectric contribution to regeneration have largely focused on the region around the wound.

“However, we wanted to look a little further,” said Sera Busse, the study’s first author who conducted the research as an undergraduate student before graduating with a degree in biology from Tufts in May 2018.

“We know that bioelectric potentials can exhibit symmetrical patterns. We asked whether it was possible that the patterns resulting from injury might also be reflected symmetrically, at a distance.”

Busse, post-doctoral scholar Patrick McMillen, Ph.D., and Michael Levin, Ph.D., the Vannevar Bush Professor of Biology in the School of Arts & Sciences and Director of the Allen Discovery Center at Tufts, devised experiments using a fluorescent dye that can reveal the pattern of electrical depolarization in the upper layer of skin.

When Busse amputated the limbs of froglets still in regeneration stage, the dye revealed a remarkable phenomenon: The un-injured leg exhibited bioelectric states that mirrored the location and type of injury occurring on the opposite side, and the effect was immediate, occurring within 5 seconds.

“What was amazing about this result was that not only did the depolarization in the un-injured leg detect the presence of injury on the other side, it also reflected information about the position of the cut,” said Levin.

The researchers considered whether such information was conveyed by typical neural communication through the central nervous system or spinal cord, but the BIM signal was undiminished when the central nervous system communication was interrupted. The result suggests that the distant communication between limbs occurs by a cell-to-cell mechanism which may be an evolutionary precursor to the more familiar neural signaling.

“Looking ahead, we will be employing more precise genetically-encoded voltage sensing tools, which can provide more quantitative and deeper tissue information than dyes, and machine learning methods to extract signatures of different types of damage from the bioelectric signal, to provide a more highly resolved understanding of the BIM phenomenon,” said Levin.

Next steps involve understanding the mechanism and information content of such long-range signaling in the body, and potentially developing surrogate-site diagnostics for many different disease conditions.

In addition to conducting leading research during her time as a Tufts undergraduate, Busse is a nationally competitive rower, a 10-time U.S. rock climbing team member and a U.S. national champion in the sport. The other two authors, McMillen and Levin, also are former undergraduates of Tufts University.

News

Paternal Transmission Of Epigenetic Memory Via Sperm

Published

on

Studies of human populations and animal models suggest that a father’s experiences such as diet or environmental stress can influence the health and development of his descendants. How these effects are transmitted across generations, however, remains mysterious.

Susan Strome’s lab at UC Santa Cruz has been making steady progress in unraveling the mechanisms behind this phenomenon, using a tiny roundworm called Caenorhabditis elegans to show how marks on chromosomes that affect gene expression, called “epigenetic” marks, can be transmitted from parents to offspring. Her team’s most recent paper, published October 17 in Nature Communications, focuses on transmission of epigenetic marks by C. elegans sperm.

In addition to documenting the transmission of epigenetic memory by sperm, the new study shows that the epigenetic information delivered by sperm to the embryo is both necessary and sufficient to guide proper development of germ cells in the offspring (germ cells give rise to eggs and sperm).

“We decided to look at C. elegans because it is such a good model for asking epigenetic questions using powerful genetic approaches,” said Strome, a distinguished professor of molecular, cell, and developmental biology.

Epigenetic changes do not alter the DNA sequences of genes, but instead involve chemical modifications to either the DNA itself or the histone proteins with which DNA is packaged in the chromosomes. These modifications influence gene expression, turning genes on or off in different cells and at different stages of development. The idea that epigenetic modifications can cause changes in gene expression that are transmitted from one generation to the next, known as “transgenerational epigenetic inheritance,” is now the focus of intense scientific investigation.

For many years, it was thought that sperm do not retain any histone packaging and therefore could not transmit histone-based epigenetic information to offspring. Recent studies, however, have shown that about 10 percent of histone packaging is retained in both human and mouse sperm.

“Furthermore, where the chromosomes retain histone packaging of DNA is in developmentally important regions, so those findings raised awareness of the possibility that sperm may transmit important epigenetic information to embryos,” Strome said.

When her lab looked at C. elegans sperm, they found the sperm genome fully retains histone packaging. Other researchers had found the same is true for another commonly studied organism, the zebrafish.

“Like zebrafish, worms represent an extreme form of histone retention by sperm, which makes them a great system to see if this packaging really matters,” Strome said.

Her lab focused on a particular epigenetic mark (designated H3K27me3) that has been well established as a mark of repressed gene expression in a wide range of organisms. The researchers found that removing this mark from sperm chromosomes causes the majority of the offspring to be sterile. Having established that the mark is important, they wanted to see if it is sufficient to guide normal germline development.

The researchers addressed this by analyzing a mutant worm in which the chromosomes from sperm and egg are separated in the first cell division after fertilization, so that one cell of the embryo inherits only sperm chromosomes and the other cell inherits only egg chromosomes (normally, each cell of an embryo inherits chromosomes from both egg and sperm). This unusual chromosome segregation pattern allowed the researchers to generate worms whose germ line inherited only sperm chromosomes and therefore only sperm epigenetic marks. Those worms turned out to be fertile and to have normal gene expression patterns.

“These findings show that the DNA packaging in sperm is important, because offspring that did not inherit normal sperm epigenetic marks were sterile, and it is sufficient for normal germline development,” Strome said.

While the study shows that epigenetic information transmitted by sperm is important for normal development, it does not directly address how the life experience of a father can affect the health of his descendants. Strome’s lab is investigating this question with experiments in which worms are treated with alcohol or starved before reproducing.

“The goal is to analyze how the chromatin packaging changes in the parent,” she said.

“Whatever gets passed on to the offspring has to go through the germ cells. We want to know which cells experience the environmental factors, how they transmit that information to the germ cells, what changes in the germ cells, and how that impacts the offspring.”

By demonstrating the importance of epigenetic information carried by sperm, the current study establishes that if the environment experienced by the father changes the epigenetics of sperm chromosomes, it could affect the offspring.

Continue Reading

News

Father’s Nicotine Use Can Cause Cognitive Problems In Children And Grandchildren

Published

on

By

A father’s exposure to nicotine may cause cognitive deficits in his children and even grandchildren, according to a study in mice publishing on October 16 in the open-access journal PLOS Biology by Pradeep Bhide of Florida State University in Tallahassee and colleagues. The effect, which was not caused by direct secondhand exposure, may be due to epigenetic changes in key genes in the father’s sperm.

Exposure of mothers to nicotine and other components of cigarette smoke is recognized as a significant risk factor for behavioral disorders, including attention deficit hyperactivity disorder, (or ADHD) in multiple generations of descendants. Whether the same applies to fathers has been less clear, in part because in human studies it has been difficult to separate genetic factors (such as a genetic predisposition to ADHD) from environmental factors, such as direct exposure to cigarette smoke.

To overcome this difficulty, Deirdre McCarthy, Pradeep Bhide and colleagues exposed male mice to low-dose nicotine in their drinking water during the stage of life in which the mice produce sperm. They then bred these mice with females that had never been exposed to nicotine. While the fathers were behaviorally normal, both sexes of offspring displayed hyperactivity, attention deficit, and cognitive inflexibility. When female (but not male) mice from this generation were bred with nicotine-naïve mates, male offspring displayed fewer, but still significant, deficits in cognitive flexibility. Analysis of spermatozoa from the original nicotine-exposed males indicated that promoter regions of multiple genes had been epigenetically modified, including the dopamine D2 gene, critical for brain development and learning, suggesting that these modifications likely contributed to the cognitive deficits in the descendants.

Nicotine and cigarette smoke have been previously shown to cause widespread epigenetic changes, Bhide said.

“The fact that men smoke more than women makes the effects in males especially important from a public health perspective. Our findings underscore the need for more research on the effects of smoking by the father, rather than just the mother, on the health of their children.”

Continue Reading

News

Nutrition Has A Greater Impact On Bone Strength Than Exercise

Published

on

ANN ARBOR—One question that scientists and fitness experts alike would love to answer is whether exercise or nutrition has a bigger positive impact on bone strength. University of Michigan researchers looked at mineral supplementation and exercise in mice, and found surprising results–nutrition has a greater impact on bone mass and strength than exercise. Further, even after the exercise training stopped, the mice retained bone strength gains as long as they ate a mineral-supplemented diet.

“The longer-term mineral-supplemented diet leads to not only increases in bone mass and strength, but the ability to maintain those increases even after detraining,” said David Kohn, a U-M professor in the schools of dentistry and engineering.

“This was done in mice, but if you think about the progression to humans, diet is easier for someone to carry on as they get older and stop exercising, rather than the continuation of exercise itself.”

The second important finding is that the diet alone has beneficial effects on bone, even without exercising. This surprised Kohn, who expected exercise with a normal diet to fuel greater gains in bone strength, but that wasn’t the case.

“The data suggests the long-term consumption of the mineral-supplemented diet could be beneficial in preventing the loss of bone and strength with age, even if you don’t do exercise training,” he said.

Combining the two amplifies the effect.

Most other studies look at effects of increasing dietary calcium, Kohn said. The U-M study increased calcium and phosphorous, and found benefits to increasing both.

This isn’t to suggest that people run out and buy calcium and phosphorus supplements, Kohn said. The findings don’t translate directly from mice to humans, but they do give researchers a conceptual place to start.

It’s known that humans achieve peak bone mass in their early 20s, and after that it declines. The question becomes how to maximize the amount of bone when young, so that when declines do begin, people start from a better position, Kohn said.

In addition to testing bone mass and strength, Kohn and colleagues performed a full battery of mechanical assessments on the bone, which is important because the amount of bone doesn’t always scale with or predict the mechanical quality of the tissue.

They tested the mice after eight weeks of training and supplemented diet or normal diet, and then after eight weeks of detraining.

Continue Reading

Like Us on Facebook

Trending Posts

News3 days ago

Paternal Transmission Of Epigenetic Memory Via Sperm

Studies of human populations and animal models suggest that a father’s experiences such as diet or environmental stress can influence...

News3 days ago

Father’s Nicotine Use Can Cause Cognitive Problems In Children And Grandchildren

A father’s exposure to nicotine may cause cognitive deficits in his children and even grandchildren, according to a study in...

News3 days ago

Nutrition Has A Greater Impact On Bone Strength Than Exercise

ANN ARBOR—One question that scientists and fitness experts alike would love to answer is whether exercise or nutrition has a...

News3 days ago

Breast­feed­ing Pro­tects In­fants From An­ti­bi­otic-Res­ist­ant Bac­teria

Globally, more than 200,000 newborns die annually of infections caused by antibiotic-resistant bacteria. However, a new study shows that breastfeeding...

News3 days ago

Combining Genetic and Sun Exposure Data Improves Skin Cancer Risk

SAN DIEGO, Calif. – By combining data on individuals’ lifetime sun exposure and their genetics, researchers can generate improved predictions...

News5 days ago

More Clues Revealed In Link Between Normal Breast Changes And Invasive Breast Cancer

A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process —...

News5 days ago

Kids’ Sleep May Suffer From Moms’ Tight Work Schedules

It may be tough for working moms to get a good night’s sleep, but working tight hours may affect their...

Trending